Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Comput Aided Mol Des ; 37(8): 339-355, 2023 08.
Artículo en Inglés | MEDLINE | ID: covidwho-20244179

RESUMEN

Identification of potential therapeutic candidates can be expedited by integrating computational modeling with domain aware machine learning (ML) models followed by experimental validation in an iterative manner. Generative deep learning models can generate thousands of new candidates, however, their physiochemical and biochemical properties are typically not fully optimized. Using our recently developed deep learning models and a scaffold as a starting point, we generated tens of thousands of compounds for SARS-CoV-2 Mpro that preserve the core scaffold. We utilized and implemented several computational tools such as structural alert and toxicity analysis, high throughput virtual screening, ML-based 3D quantitative structure-activity relationships, multi-parameter optimization, and graph neural networks on generated candidates to predict biological activity and binding affinity in advance. As a result of these combined computational endeavors, eight promising candidates were singled out and put through experimental testing using Native Mass Spectrometry and FRET-based functional assays. Two of the tested compounds with quinazoline-2-thiol and acetylpiperidine core moieties showed IC[Formula: see text] values in the low micromolar range: [Formula: see text] [Formula: see text]M and 3.41±0.0015 [Formula: see text]M, respectively. Molecular dynamics simulations further highlight that binding of these compounds results in allosteric modulations within the chain B and the interface domains of the Mpro. Our integrated approach provides a platform for data driven lead optimization with rapid characterization and experimental validation in a closed loop that could be applied to other potential protein targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Antivirales/química
2.
J Chem Inf Model ; 63(5): 1438-1453, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2264992

RESUMEN

Direct-acting antivirals for the treatment of the COVID-19 pandemic caused by the SARS-CoV-2 virus are needed to complement vaccination efforts. Given the ongoing emergence of new variants, automated experimentation, and active learning based fast workflows for antiviral lead discovery remain critical to our ability to address the pandemic's evolution in a timely manner. While several such pipelines have been introduced to discover candidates with noncovalent interactions with the main protease (Mpro), here we developed a closed-loop artificial intelligence pipeline to design electrophilic warhead-based covalent candidates. This work introduces a deep learning-assisted automated computational workflow to introduce linkers and an electrophilic "warhead" to design covalent candidates and incorporates cutting-edge experimental techniques for validation. Using this process, promising candidates in the library were screened, and several potential hits were identified and tested experimentally using native mass spectrometry and fluorescence resonance energy transfer (FRET)-based screening assays. We identified four chloroacetamide-based covalent inhibitors of Mpro with micromolar affinities (KI of 5.27 µM) using our pipeline. Experimentally resolved binding modes for each compound were determined using room-temperature X-ray crystallography, which is consistent with the predicted poses. The induced conformational changes based on molecular dynamics simulations further suggest that the dynamics may be an important factor to further improve selectivity, thereby effectively lowering KI and reducing toxicity. These results demonstrate the utility of our modular and data-driven approach for potent and selective covalent inhibitor discovery and provide a platform to apply it to other emerging targets.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , SARS-CoV-2/metabolismo , Antivirales/farmacología , Pandemias , Inteligencia Artificial , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento Molecular
3.
Anal Chem ; 94(15): 5909-5917, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1882715

RESUMEN

SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.


Asunto(s)
Biosimilares Farmacéuticos , COVID-19 , Cromatografía Liquida , Cromatografía de Fase Inversa/métodos , Glicoproteínas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Polisacáridos/análisis , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
4.
PLoS One ; 16(4): e0250019, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1197380

RESUMEN

SARS-CoV-2 has caused a global pandemic, and has taken over 1.7 million lives as of mid-December, 2020. Although great progress has been made in the development of effective countermeasures, with several pharmaceutical companies approved or poised to deliver vaccines to market, there is still an unmet need of essential antiviral drugs with therapeutic impact for the treatment of moderate-to-severe COVID-19. Towards this goal, a high-throughput assay was used to screen SARS-CoV-2 nsp15 uracil-dependent endonuclease (endoU) function against 13 thousand compounds from drug and lead repurposing compound libraries. While over 80% of initial hit compounds were pan-assay inhibitory compounds, three hits were confirmed as nsp15 endoU inhibitors in the 1-20 µM range in vitro. Furthermore, Exebryl-1, a ß-amyloid anti-aggregation molecule for Alzheimer's therapy, was shown to have antiviral activity between 10 to 66 µM, in Vero 76, Caco-2, and Calu-3 cells. Although the inhibitory concentrations determined for Exebryl-1 exceed those recommended for therapeutic intervention, our findings show great promise for further optimization of Exebryl-1 as an nsp15 endoU inhibitor and as a SARS-CoV-2 antiviral.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/química , COVID-19/virología , Células CACO-2 , Chlorocebus aethiops , Reposicionamiento de Medicamentos/métodos , Endorribonucleasas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Células Vero , Proteínas no Estructurales Virales/metabolismo
5.
Biomol NMR Assign ; 15(1): 107-116, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1002175

RESUMEN

The Betacoronavirus SARS-CoV-2 non-structural protein Nsp9 is a 113-residue protein that is essential for viral replication, and consequently, a potential target for the development of therapeutics against COVID19 infections. To capture insights into the dynamics of the protein's backbone in solution and accelerate the identification and mapping of ligand-binding surfaces through chemical shift perturbation studies, the backbone 1H, 13C, and 15N NMR chemical shifts for Nsp9 have been extensively assigned. These assignments were assisted by the preparation of an ~ 70% deuterated sample and residue-specific, 15N-labelled samples (V, L, M, F, and K). A major feature of the assignments was the "missing" amide resonances for N96-L106 in the 1H-15N HSQC spectrum, a region that comprises almost the complete C-terminal α-helix that forms a major part of the homodimer interface in the crystal structure of SARS-CoV-2 Nsp9, suggesting this region either undergoes intermediate motion in the ms to µs timescale and/or is heterogenous. These "missing" amide resonances do not unambiguously appear in the 1H-15N HSQC spectrum of SARS-CoV-2 Nsp9 collected at a concentration of 0.0007 mM. At this concentration, at the detection limit, native mass spectrometry indicates the protein is exclusively in the monomeric state, suggesting the intermediate motion in the C-terminal of Nsp9 may be due to intramolecular dynamics. Perhaps this intermediate ms to µs timescale dynamics is the physical basis for a previously suggested "fluidity" of the C-terminal helix that may be responsible for homophilic (Nsp9-Nsp9) and postulated heterophilic (Nsp9-Unknown) protein-protein interactions.


Asunto(s)
Espectroscopía de Resonancia Magnética , Proteínas de Unión al ARN/química , SARS-CoV-2/química , Proteínas no Estructurales Virales/química , Sitios de Unión , Isótopos de Carbono , Codón , Cristalografía por Rayos X , Dimerización , Disulfuros , Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Isótopos de Nitrógeno , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA